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AIlItnIct-With advanced composite materials expected to appear to a pealer and pealer extent
in aircraft primary structure, their inherent weilht-savinp attractiveness is enhanced by permitting
relatively IiJhtly loaded plate elements to operate in the postbuckled state. A theoretical
4evelopment and analysis procedure is presented for prediction of bucklin.. postbw:k1ing and
crippling loads in laminated composite plates. Specific application is made to a number or simply
supported, graphite epoxy plates with geometric and material properties corresponding to those
included in sewraI experimental programs, the results of which, in the form of load·shortening
curves, have been reported in the literature. With the efl'ects of transvene shear and material
ncmIinearity combined with the maximum-strain failure criterion included in the theoretical
analysis, JOOd qreeaaent is obtained with the experimental results for initial bucklina. postbuckling
stiffness and failure (crippling). The theory and analysis described herein can be used as an aid in
the design process, particularly in the isolation of candidate laminates without resorting to
extensive and costly test programs.
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NOTATION
membrane stift'nesses from c1usical lamination theory
arbitrary interlaminar shear coefficients
plate width
membrane bending stift'nesses from classical lamination theory
bending stifl'J1ess from cIusicaI lamination theory
longitudinal and transverse Young's moduli of the kth lamina, respectively
secant modulus of the deformation theory of pluticity
equivalent e1utic moduli for a laminated composite in plate axes coordinates
arbitrary displacement coefficients
subscript denoting elutic materials
vector of arbitrary x-dispJacement coefficients
compliance ratio factors defined by eqn (SO)
Reillllel' integrand defined by eqn (I)
stresI-eDCI'IY density
.tress-ener&Y density of the k th lamina as a function of inplane .tresses in material

coonIinates
au. IDCI'IY density of kth layer of matrix material
inplane shear modulus relative to material axel coordinates
matrix material shear modulus
equivalent inplane shear modulus for a laminated composite plate relative to material axes

coordinates
laminate thickness
arbitrary inplane stress coefficients
IWDbert-Osaood type parameters for kth lamina inplane and matrix material constitutive

relations, rapectively
k kth lamina
L plate length
m number of half·buckle wavelengths in x-direction
N totl! number of lamina

Dumber of half·buckle wavelengths in y-direction
IWDbera-<>sJOOd type constants for kth lamina inplane and matrix material constitutive

relations, respectively
buckIina load-clusical theory (without transvene shear)
buckIina ioad--present theory (with transvene shear)
experimcDtaI buckling load
experimaltal crippling load
cripptiq Ioad--present theory
inplane stress resultants
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N x / matrix defined by eqn (46)
subscript denoting nonlinear elastl>-plastic materials
transformed reduced stiffnesses of clasical lamination theory
stiffnea ratio factors defined by eqns (41) and (42)
transformed reduced compliances of classical lamination theory
lamina thickness
matrix layer thicknea (z. - z._.)
generalized x-displacements of the polynomic expansion in eqn (43)
inplane x-direction displacement function
median surface inplane displacements of kth lamina
inplane y-direction displacement function
lateral displacement function
plate coordinates
terms of series expansion describing the x - y variations of the u displacement
distance between the plate middle surface and the laminate neutral axes in x and y directions,

respectively
median surface shearing strains of kth lamina
interlaminar shearing strains of kth matrix layer
prescribed end-shortening per unit length
end-shortenina per unit lenath at cripplina
end-shortening per unit length at buckling
fiber strain
maximum allowable fiber strain
median surface extensional strains of kth lamina relative to material axes coordinates
median surface extensional strains of kth lamina relative to plate axes coordinates
strain quantity defined by cqn (20)
coefficients of mutual influence relative to material axes
major and minor Poisson's ratios relative to material axes
summation sign
effective stress
median surface extensional stresses of kth lamina in material coordinates
generalized stresses of the polynomic expansion in cqn (44)
median surface extensional stresses of kth lamina in plate coordinates
median surface sheariDJ stress of the kth lamina in material coordinates
median surface shearing stress of the kth lamina in plate coordinates
interlaminar shearing stresses of kth matrix layer

INTRODUCTION

The use of advanced composite materials (ACMs) in commercial and military aircraft
introduced in the 1970s is, for the most part, based upon predictions of conservative
analysis methodologies [I] and/or the results ofcostly design, test, and redesign procedures.
For typical aircraft elements and components such as beam, plate, stiffened panel, and
semimonocoque structures, the properties of the fiber-reinforced matrix base material are
transformed by the classical lamination theory to equivalent elastic moduli representing
the overall laminate. Implicit in this method of design and analysis is the assumption that
the new composite part will have the same stiffness and stre11Jtb characteristics as the
metallic part it is to replace. Wherein some weight saving is achieved, an optimized design
is not realized because the unique characteristics of the composite material have not been
used to full potential. That conservatism in advanced composite design exists is exemplified
by the fact that most aircraft applications appear in secondary structures, a direct
consequence of cost, confidence, and complexity problems on the one hand and an
insufficient research and technology base on the other.

A specific example of the conservative approach is the current standard practice of
designing both conventional and composite plate structures under compressive loading by
using the buckling load as an indication of structural failure. This practice ignores the
significant amount of additional load-carrying capability of postbuckled structural plates.
The end result of this practice is an increase in the weight of lightly loaded ftight structures
above what is needed for safe operation, a design philosophy currently at odds with
requirements for significantly improved energy efficiency. For appreciable weight-saving
returns, the use of the postbuckling strength of laminated composite plates has direct
application to primary structure of helicopters and VSTOL aircraft operating in the low
subsonic speed range and to commercial aircraft operating in the high subsonic speed
range where loads rarely exceed about 6Q01o of the limit load.

It should also be pointed out that laminated composites possess a number of unique
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structural behaviors that are not usually observed in metals. For instance, interlaminar
stresses can significantly reduce the buckling and ultimate loads in a laminated
composite[2, 3]. Related to this is the effect of fiber orientation and lamination sequence
on the composite strength [4]. Material nonlinearities due primarily to the matrix can lead
to stress redistribution effects in general. Other stress redistribution effects occur in
lincar-elastic postbuckled plates; however, they are altered significantly by the material
nonlinearities associated with the matrix. The purpose of this paper is to generalize, and
both improve qualitatively and extend quantitatively, earlier work by Anderson and
Mayers [5] for predicting the postbuckling behavior of composite plates in the
elasto-plastic range, including the effects of transverse shear, by removing the restriction
to symmetric angle-ply laminates and incorporating a failure criterion for establishing the
point of ultimate loading (crippling) on the load-shortening curve of a given composite
configuration. The solution procedure of Anderson and Mayers is improved to the point
where the equilibrium of resultant forces acting in the plane of the plate, the boundary
conditions, and the constitutive relations between average resultant force and average
resultant displacement on any section is satisfied in the lincar-elastic case; however, the
constitutive relation is satisfied only to a good approximation in the elasto-plastic case.

Finally, with regard to failure prediction, the maximum strain criterion is used and
shown to be applicable to the prediction of crippling of postbuckled filamentary laminated
composite plates. Comparisons with available experimental data show excellent agreement
for buckling, postbuckling and crippling.

THEORY
The buckling, postbuckling, and crippling of composite plates requires a theoretical

model which is both kinematically and constitutively nonlinear. The complexity of the
problem suggests the introduction of the Reissner variational approach [6], one in which
both the states of stress and strain (or displacement) can be selected independently. The
stress and strain states are each arbitrary, subject to a priori satisfaction of prescribed
conditions at the plate boundaries. The plate, shown in Fig. I, consists of N arbitrarily
oriented anisotropic laminae of thickness t/rrtt with the neutral axes of the laminate located
in accordance with classical lamination theory. Unlike classical lamination theory,
however, transverse shear effects are included, although no provision is made for the
occurrence of discontinuities analogous to either delaminations or debonds. With (1", (1"
't"" 'tyz, and 't", representing the components of stress, E", Ey, "1"" "Iyz, and "I." the components
of strain, U, v, and w the components of displacement, then a function F" is defined for
the kth layer

(1)

where, within the framework of .large displacement, moderate rotation kinematics, the

z
Fig. 1. Laminated composite plate model.
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membrane strains are
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aF' au aw Uk - Uk - J aw
'YVt = - = - + - == + -.

in'Vt az ax Zk - Zk-I ax

(2)

(3)

(4)

(5)

(6)

It should be noted that these strain-displacement relations apply to each individual lamina
and terms which provide for bending in the laminate (for example, f.x "" 82w/8x~ are
accounted for in the through-thickness processes inherent in basic lamination theory. The
Reissner variational principle may be stated as follows: "Among all states of stress and
displacement which satisfy the boundary conditions of prescribed surface displacement the
actually occurring state of stress and d!splacement is determined by the variational equation

~{ffIvF" dV - ff, (ftxU + ftyv + ft.w) dS} == 0 (7)

where Px, Py, and p, are prescribed surface tractions on S."
For the present investigation, uniaxially compressed plates under prescribed end

shortening are of interest; hence, the variational equation reduces to the form

(8)

Completion of the variational process implied in (8) (see Ref. [7]) shows that the vanishing
of the volume integral requires satisfaction of both the lamina equilibrium equations

(9)

(10)

(11)

and the lamina stress-displacement relations given by (2}-(6). To account for material
nonlinearity in each anisotropic lamina, a modified Ramberg-Qsgood[8] constitutive



Buckling, postbucltling, and crippling of materially nonlinw.laminated composite plates

fonnulation is introduced. Thus, the biaxial stress-strain relations are

{al "l1 "ll, (al)"' (a,)",}€,,,- ---a,+-''C,,+K, - -MIl-
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(12)

(13)

(14)

where subscripts I and t represent fiber direction and perpendicular-ta-fiber direction,
respectively. The underlined terms in (12) and (13) correspond to the induced nonlinear
lateral strains. To establish confidence in their elasto-plastic stress-eneray'density for
introduction into the Reissner principle fonnulation, Anderson and Mayers correlated
theoretical prediction of biaxial strain response with test data obtained using off-axis
specimens in tension. The high degree ofcorrelation obtained suggests that the strains (12)
and (13) can be approximated by setting M Il - Mil =: O.

For the matrix material, which is assumed isotropic, the Rambera-Osgood relations are
taken as

(IS)

(16)

With the definition of a suitable stress-energy density function F', application of the
variational principle will produce both the equilibrium and stress-dispIacement relations.
With some modification to the fonn presented by Anderson and Mayers, the inplane stress
energy density function (F;"',,) is written as the sum of a plastic portion

, {KI (11,_1) 2F,,,,,. = (n, + I)E,(€.r) (a, - "~p,+ "/"PI'CIt)

+ K, (\(11,-1)( 2 +
(n, + I)E, E.rl a, - ",PP, '1/",a,'C"

1(3 1 1 )(I-III1 )f2 K."+- _.. . I (E.r)(1111 -I)

2 4 (l + "11) (1 + ",/) (Nil + I)G"

. ('r~ + '1/'~''C1I + '1,,~/'CJt
and an elastic portion

1{al a,2 ("" "") 'C~FfiIt« =- -+-- -+- ap,+-
It 2 E, E, E, E, G"

+ ('11,1' +""")a,'C" +("""+ "II,')a,'CII}
G" £, Gil E, ...

or

(17)

(18)

(19)
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where the effective strain is defined as

(20)

The stress-energy density in the earlier work by Anderson and Mayers does not include
the term singly underlined in (17). This additional term has been added to insure that the
reduction of (17) to an isotropic formulation is consistent with the deformation theory of
plasticity for an incompressible isotropic solid. Similarly, the singly underlined constant
in (20) must be included in the current approach as well. The doubly underlined terms in
(17), (18), and (20), not present in the earlier work of Anderson and Mayers, are required
to extend the theory from orthotropic to anisotropic materials.

For the isotropic case where EI = E, = E, Gil = G m = G,IIII = 1111 = II, nil = nl = n, = n,

KII = KI=K,=K, then

(21)

where

(22)

(23)£eff = .../J {£,,2 + £,2 + £"£, +";'}1/2

and (Jeff is the effective stress, £eff the effective strain, and Es the corresponding uniaxial
stress-strain curve secant modulus of the J2 or secant modulus deformation theory of
plasticity. For the matrix material,

F~L=F~ +F~ .
• 'A 'A

(24)

(25)

(26)

It can be shown that the definitions of FlmA and F~A reduce identically to the isotropic
formulation and satisfy the generalized constitutive relations (2}-{6).

MAXIMUM STRAIN FAILURE CRITERION

To predict the point of ultimate load (crippling) on a load-shortening curve the
maximum strain criterion has been introduced into the analysis. To justify the applicability
of the maximum strain criterion in the present study, reference is made to the experimental
data of Tennyson[9] with tubular composite specimens. Shown in Fig. 3 are the
experimental results of Tennyson compared with the analytical work of Craddock and
Champagne[lO] for various other failure theories. The maximum strain criterion, which
was not considered in either of the other works, compares with the test data quite well
as can be observed. Shown in Fig. 4 is an enlarged plot of Fig. 3 with just the maximum
strain theory compared with test data. It can be seen that for wrap angles between 34°
and 52° the mode of failure is shear. For angles less than 34° or Jl'Citer than 52° the mode
of failure is transverse tension.

If, however, the matrix material were to be highly nonlinear (which is often the case)
then the "shear" curve would rise and transverse tension would be the principle mode of
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failure. For angle-plies greater than :t 40", it is notedtliatitfte data appear shifted by about
2-4°. This is most likely due to manufacturing tolerances in the wrap angle. In tests
perfonned at Ford Aerospace for a similar size tube and graphite epoxy tape it has been
found that tubes supposedly belt wrapped at 60° were observed actually to have a wrap
angle of56-58°[11]. When these adjustments are made to the test data, then the correlation
with the maximum strain theory is almost exact over the entire range of wrap angles. The
test results discussed so far have concentrated on failure associated with the matrix
material itself. In the case ofthe fiber the most commonly observed failure mode is uniaxial
tension. Indeed, all the various failure theories produce the same predicted failure load
when the load is aligned with the fiber.

The maximum strain failure criterion, like the other failure criteria, is phenom
enological in nature. That is to say, the exact mechanism (or physics) of failure is not
treated; rather, the observed behavior is modeled with gross macroscopic measureable
responses. In this context, the worth of any failure theory must be determined by
comparison with actual test data. The maximum strain failure criterion seems to perfonn
very well for laminated composites in which both fiber and matrix are relatively brittle.
As pointed out by Grimes and Whitney[12], the maximum strain failure criterion should
be accurate as long as the nonlinear shear strain components are small and do not interact
with nonnal strains.

It should also be noted that the maximum strain failure criterion is operationally simple
to use, requires the availability of only limited test data, and can be used to predict the
actual mode of failure; that is, fiber failure or matrix failure in tension or shear. Other
failure theories based upon strengths (for instance, Tsai and Wu[13J) produce a failure sur
face for which no physically plausible failure mode can be associated. For relatively ho
mogeneous but orthotropic materials such as ATJ-S or pyrolytic graphite, etc. the tensorial
theories based on strength are generally more accurate.

APPLICATION TO A SPECIALLY ORTHOTROPIC
LAMINATED COMPOSITE PLATE

The analysis undertaken is concentrated on specially ortbotropic plates and plates
which can be considered as reasonably specially ortbotropic (D1JD22 and
D26ID22 ~ D~Dn>. Reliable experimentally determined load-shortening curves including
prebuckling, buckling, postbuckling, and crippling data, exist only for such plates as
exemplified by the investigations of Spier el a/.[l4-18).

The use of the Reissner variational theorem provides differential equations of
equilibrium and stress-displacement compatibility that must be integrated over the volume
of the plate. As a consequence, in effecting an approximate solution, both the equilibrium
and stress-displacement equations are satisfied over the volume but not necessarily at a
point. If it were possible to construct the exact solution for both stresses and displacements,
then equilibrium and stress-dispIacement equations would also be satisified at every point.
In application to a unifonnly compressed plate with straight unloaded edges, it is observed
that along any x =constant or y =constant line, including the plate edges, the internal
resultant forces (Nz, N,. Nzy) are given by

(27)

(28)

(29)

Judicious choice ofstress and displacement functions is essential in applying the variational
fonnulation of Reissner; however, a finn judgment as to theaceuracy of the solution can
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only be made by comparison to other established numerical techniques. For instance,
Anderson and Mayers[S] used mathematically rather than physically desirable membrane
functions, thereby only approximately satisfying the membrane displacement boundary
conditions and the statics conditions (27)-(29). As a result, their solutions fell short of
exact static equilibrium satisfaction along all x and y cross sections of the plate, a lack
of rigor removed in the present application. Nevertheless, solution acceptability was guided
by correlation of results for the predicted ratio of postbuckling stiffness to initial stiffness
with established results obtained from load-shortening curves for isotropic and angle-plied
(±8) laminated plates.

The kth lamina displacement functions for a simply supported plate with straight
unloaded edges free to move in the plane of the plate are

m7TX n7TY
w = gl cos T cos T

(30)

(31)

(32)

where ell' Itl' 1t2' etc. are unknown amplitude coefficients to be determined from the
variational analysis. These functions are required in order to insure that the desired
geometric boundary conditions are satisfied; i.e.

Uk = ±~(L/2) at x = ±L/2

Vk = ±ltl(b/2) at y = ±b/2

w = 0 at x = ±L/2,y = ±b/2.

The kth lamina stress functions are

(33)

(34)

(35)

(
2mty mnx nny ) I mnx nny

a Xl = S~1 h111 +h112coS-
b

- +hI 13cosT COST + S~lzth121 COST cosT (36)

(0) ( • 2mnx . 2nny ) S(I) , I. • mnx . nny
'rXyl=SItYl h3ll sIn--z;--sIn-b- + 1t)'1Z*,'321SInTSInT

(37)

(38)

(39)

(40)

where the hpl)s and all' bu are determined from the variational procedure and provide for
satisfaction of eqns (27)-(29) in the process.

The combination of displacement and stress functions given by eqns (29)-(32) and
(36)-(40) represents the most limited set that can be chosen and which still satisfies both
geometric boundary conditions and overall membrane equilibrium conditions while
providing for the maximum amount of coupling of displacement and stress distributions
in the Reissner functional (1).

Th .. S(O) S(O) s(O) S(I) S(I) S(I) tifti ti' f: t . todd te quantities Xl' '1' XY.' Xl' Y.' It,. are S ness ra 0 ac ors In r uce 0
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render the stress distributions applicable to layups other than 'those reflecting ± 6-degree
fiber orientations. With the stiffness ratio factors each equal to unity, the stress distribu
tions are valid only for isotropic media and ± 6-degree orthotropic layups, the restriction
on the postbuckling analysis conducted by Anderson and Mayers[5]. Thus, the present
development represents still another significant improvement of the earlier work to
encompass a much wider class of composite laminates.

It should be noticed that when the stiffness ratio factors are unity each layer is assumed
to have the same level of membrane stress with the bending contribution being a linear
function of z". For a general laminated composite this cannot be true. In Fig. 2, a schematic
of the strain and stress distributions through the thickness ofa typical laminated composite
are shown. The strains are assumed to be the sum of a membrane and a linear bending
component. However, the stresses are neither linear nor uniform because the stresses are
a function of the stiffness of the lamina in that particular direction. Thus, to account for
the difference between the actual lamina stress and the assumed laminate average stress,

m-·~/--/-·~-{r
E q E 0

BENOING MEMBRANE

Fig. 2. Typical lamina stress and strain distribution.

CRITERION
___ MAXIMUM STRAIN

---- MAX IMUM STRESS
_ .. - TSAI-WU GlUAORATIC lBJ
- ..... - TSAI-WU CUBIC lBI
.................. HOFFMAN'S 1231

O. 10. 20. :30. 40. 50. SO. 70. eo. SO.

PLY ANGLE (OEG.l

Fig. 3. Comparison of various failure criteria.
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Fig. 4. Comparison of maximum strain criterion with test data from [9).

the stiffness ratio factors

S(O) = (all);'
"A All' ... (41)

(42)

are introduced as shown in eqns (36)-(40). An alternate procedure would be to take the
hpjJs and all' bll different for each lamina, thus increasing significantly the number of
variational equations required to effect the solution.

As in Anderson and Mayers[S], following the approach of Durlofsky and Mayers[19]
based on their generalization of the sandwich plate model of Hoff[20], the through
thickness variations are taken as polynomic expansions in Z

( ) ( )

2
_ (0) :. (I) :. (2)

(1:-(1" + h (1" + h (1" + ....

(43)

(44)

In vector-matrix notation, the spatial distributions and unknown amplitude coefficients are
written, for example, as

it = Pixt

where

-[ Zl zt ZIHJ
Z2 zi ZY;"p= .

1 ZN z~ z~-I)

(45)

(46)
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and N == number of lamina. Also

(47)

where amrm are the spatial distribution functions in (30)-(32), and

(48)

It is also noted that the application of the Reissner variational theorem leads to the lamina
stress-strain relations being established in terms of compliances; that is,

(49)

(50)

(51)

The lamina summation process leads to a summation of compliances for each laminate.
In general, the summation of lamina compliances cannot yield the correct laminate
compliance; thus to account for this possible discrepancy, the energy in each layer must
be adjusted by the compliance ratio factors.

h2 h2 _ h3

(l;.)h (D;Ji (D;) "4 (Dj;>U

fA/it =~(~)' fll/lt = (~') ,fN/it = (S') ,fDlJt = (5- ') •
(,,)i)'A: "I) A: I) A: iJ Ie

For a nonsymmetric laminate, generalization of the work of Anderson and Mayers
requires redefinition of the P matrix defined in (46). In Ref. [7], the matrix is developed
on the basis of the assumption that the middle surface of the plate is coincident with the
neutral axis of the laminate. For isotropic materials, unidirectional and symmetric angle
ply (± 0) laminates this is indeed true. However, for nonsymmetric laminates, the neutral
axis and middle surface are not coincident; thus, a proper accounting of the stress
distribution requires that P be defined as

[

1 Zl -..:1 (ZI - ..:1)2 (ZI - ..:1)(/_1)]
1 Z1-..:1 (Zl-..:1)2 (Z2-..:1)(/-I)

P=::: :... .
I ZN-..:1 (ZN-..:1)l ••. (ZN-..:1)(/-I)

where ..:1 is the distance from the middle surface of the plate to the neutral axis of the
laminate. Additionally, it is noted that the location of the neutral axis in the x-direction
may be quite different than the location of the neutral axis in the y-direction. Thus, it is
necessary to define analogous terms Px , Py , Ax, Ay •

RESULTS AND DISCUSSION

The preceding theoretical developments have been programmed on a CDC 7600
computer in order to perform the calculations. To check the accuracy of the linear-elastic
thC9ry many different laminate configurations and rectangular plate sizes (including
square) have been analyzed. In all such cases, the transverse shear modulus has been set
arbitrarily large (that is GI'z1G", ,.., 0) in order to remove the effects of transverse shear and
allow comparison with the classical theory for laminated composites (see, e.g. [21]). The
results are summarized in Fig. 5 which shows the quantity (NerIN';) where Ner is the
calculated buckling load of the present theory and N'; is the classical buckling load. These
results are plotted as a function of the number of inplane integration points used in
evaluating the assumed stress and displacement distribution functions. It is noted that the
present theory is a least 99.3% accurate for 5 or more integration points per quarter wave
of the buckled shape and 121ayers or more. In other words the present theory shows that
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Fig. 6. Effects of transverse shear on initial buckling.

for 5 or more integration points per quarter wave, N"/N"J~ I as the number of layers
approaches infinity.

To establish the effects of transverse shear, a comparison of N~I/Ne.: for various bit
ratios is shown in Fig. 6. N"J refers to the buckling load without the transverse shear effects
whereas Ne.: refers to the buckling load with transverse shear effects included. A composite
layup taken from Spier[l4] has been chosen to compare with the results for an isotropic
plate. As can be seen in Fig. 6, the effect of transverse shear can be significant for composite
plates with bit ratios as high as even 50. It is also noted that the effect of the transverse
shear depends upon both the particular layup and the number of buckle half-wavelengths.
The former can be related to the ratios of EII/G"" En/G"" and GI2/G", of the overall
laminate; the latter, as in the case of conventional beam and plate structures, depends on
the total thickness to wavelength ratios.

It is of extreme interest to note that Spier has stated " ... in certain tests, the ultimate
loads were less than the corresponding theoretical elastic buckling loads, exposing the
futility of using classical buckling theory for laminated plates"[IS]. The magnitude of
transverse shear effects established through application of the current theoretical analysis
justifies Spier's observation. Just how well nonclassical buckling analysis and experiment
correlate is demonstrated by the data presented in Tables 1-3. The predictions are those
of the present study; the experimental data are those given by Spier in Refs. [14-18].
Whereas the ratio NfrlN~f ranges from 0.50 tQ 0.93, the ratio Nf'IN'; ranges from 0.76
to 1.12. Furthermore, if the test corresponding to N'f/N" - 0.76 were to be eliminated on
the basis of being a questionable point, the range for NF/N': would be 0.89-1.12. Thus,
it seems reasonable to conclude that, within the range of scatter to be expected in
conducting laminated composite plate testing, the present theory and analysis procedure
adequately predict buckling loads for composite plates in the linear elastic range.
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Table l. Predicted buckJing loads compared with test data from Ref. [14]

Buc:kling Load (K II'S) Nr/N:r Nr/N:

SPECIMEN Theory Theory 'I'heory Theory

ID blL TcsL (CIll.'llIic:a1) (WiLh Shear) (Claaaic:a1) (WiLh Shear)

3-51 33.9 2.95 3.12 2.8~ .94 1.0~

3-52 33.7 2.95 3.20 2.91 .92 1.01

4-51 41.5 2.45 2.57 2.38 .95 1.03

4-52 40.7 2.55 2.74 2.52 .93 1.01

7-51 32.9 2.82 3.30 2.90 .85 .•97

7-52 32.0 3.00 3.68 3.21 .82 .114

Table 2. Predicted bukliq loads compared with test data from Ref. [IS)

TcsL Duc:klinc Load (Ib) N1'/N:r Nt'/N::

SPECIMEN B L b L blL (lh) Tbcory Theory Theor)' Tbcor)'
NUMDRR (lA.) (in.) (in.) 1181 (Ol_ic:al) (WiLlI SI_r) (CI_ial) (WiLlI Shear)

2A 4 8.0 2.002 .0630 31.8 3,000 3,18G 3,252 .7' .12
2B 4 8.0 2.0111 .06~2 3t.2 3,2&0 4,009 3,424 '.81 .15
20 4 8.0 2.002 .0617 32.5 3,250 3,556 3,072 .11 1.06

4A 8 8.0 2.001 .0138 23.9 6,300 8,G15 6,757 .73 .13
4D 8 8.0 2.001 .0121 24.4 6,400 8,101 6,401 .11 1.00
40 8 8.0 2.007 .0141 23.6 6,350 8,1135 G,'72 .71 ••1

6A 12 '.0 2.001 .130 1'.4 10,_ 15,307 11,020 .66 .13
68 12 8.0 2.001 .1052 1'.0 10,300 16,405 11,500 .63 .It
CiO 12 1.0 2.004 .131 1'.4 12,400 15,423 11,037 .80 1.12

lA 4 12.0 3.000 .0644 46.6 2,300 2,607 2,50G .85 .112
18 4 12.0 3.000 .0644 46.6 1,000 2,G80 2,409 .71 .76
10 4 12.0 3.000 .0642 46.7 2,250 2,672 2,484 .84 .91

3A I 12.0 3.000 .000G 35.9 5,100 5,682 1i,086 .90 1.00
3D 8 12.0 3.000 .08G7 34.6 5,200 Ci,363 5,627 .lI2 ••2
30 8 12.0 3.000 .0860 34.0 5,700 6,210 5,502 .92 1.04

SA 12 12.0 3.000 .1057 28.4 9,250 11,008 9,356 .83 .09
SB 12 12.0 3.000 .10G6 28.1 10,400 11,383 11,572 .111 1.09
SO 12 12.0 3.000 .0180 30.6 8,000 8,845 7,625 .to 1.05

Table 3. Predicted bucldina loads compared with test data from Refs. 117, 18]

Suc:kIiDg Load (Ib) Nr/N:i Nr/N:J

SPECIMEN TesL Tllcor)' Thcor)' Theory Theory
NUMIJEIt blL (lb) (CI_ie"l) (WiLh Shear) (Cluaieal) (WiLh Shear) Layup

1ID-NI18) 23.9 7,710 1,500 7,654 .81 1.03 145/0/- 451901••
5A-N~18) 37.0 5,IlOO 8,000 5,381 .113 1.04 145/0/- 45/901..
lo'ig. 6 or 12.4 10,GOO 21,400 10,178 .50 1.114 I:HSa/Olt/:i: 45)T

(171

Fie. 7 or 38.2 4,300 5,000 4,480 .86 •08 145/~/- 45/041•
117)

Fig. 10 or 18 8,300 13,300 8,875 .82 .16 10./:i: 45al.
1111

Fie. 10 or 28 7,DSO IMO 8,1187 .83. • 1.01 1O./:i: 45.1.
1171
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Table 4. Predicted fiber strains at experimental value of crippling load

bit Layup (i/i.. ), Nr/N" N:'/N" (, (%)

32 [:l:45/90/03), 2.8 .97 1.06 -1.2

41 {:I:45/03/90), 3.4 1.01 .05 -1.4

34 {:l:45/03/OO}. 2.6 1.01 .95 -1.1

37 145/0/ - ~5/90J2' 2.1 1.01 1.07 -0.8

38 1~5/0;/- ~5/0.J2c 3.0 .96 .98 -0.8

28 {:I:45/0,). 1.8 1.00 1.03 -1.0

36 1:l:45/0~l. 2.1 1.00 1.02 -1.1

To the extent that classical theories can account only for linear material behavior, the
validity of the present theory, specialized to linear elastic considerations, is established.
However, verification of the theory for nonlinear material effects is required. In this regard,
the earlier work of Anderson and Mayers[S], in which both isotropic and symmetric
angle-plied composites are examined, has confirmed the validity of the current nonlinear
material model for at least these cases. Indeed, the present theory reduces to that of
Anderson and Mayers for the special cases cited above. For more complex laminated
constructions, that is, nonsymmetric and arbitrarily angle-plied laminates, the present
theory in its full extent is required. Fortunately, the recent work by Spier el al.[14-18]
provides the necessary experimental data to verify both the general applicability of the
present buckling and postbuckling theory and establish a criterion for the prediction of
ultimate (crippling) load.

Given in Table 4 are comparisons oftheory and experiment for 7 of the 13 experimental
load-shortening curves presented by Spier el a/.: six of the load-shortening curves are not
considered as the respective test specimens reftect plates which either are too thick
(bll < 18) or duplicate closely one or more of the seven selected. As can be seen, the ratio
of experimental and theoretical results for initial buckling and crippling, respectively, are
in excellent agreement in consideration of the scatter to be expected in the testing of
laminated composites. The theoretical crippling load has been determined as the load
corresponding to the (b Ibet), of the experiment and for which the fiber strain shown in the
last column of Table 4 satisfies the criterion 0.8% < £max < 1.2%, the range in which all
seven of the test plates fail. Conversely, in the absence of an experimental curve, the
prediction procedure would be to construct the theoretical load-shortening curve NINc,
versus b/bc, to the point where the calculated maximum fiber strain exceeds 1.00/0 in
compression. It is important to note that the typical B-basis allowable strain (95%
confidence, 90% probability) presented in Ref. [I] is 0.83% in compression and 1.15% in
tension. Thus, for design purposes, it is recommended that a maximum compressive fiber
strain of 0.83% be used in place of the 1.0%.

Comparison of theory with experiment for actual load-shortening curves taken
from Spier[14] are shown in Figs. 7-13. The analytical results for the actual nonlinear
material behavior are shown with the symbol ( x ). Only three calculated points in addition
to the initial buckling point are determined in view of the relative smoothness of the
experimental curve and in the interest of minimizing computational cost. Roughly
speaking, the difference in costs between producing a linear-elastic point and an
elasto-plastic point is two orders of magnitude.

The final calculated point possesses the same alae, value as the experiment using,
as shown, e.g., in Fig. 7, the abscissa intercept corresponding to an initial prebuckling
slope of Ell = 11.1 X 106 psi, the laminate modulus obtained by Spier through the material
testing phase of the experimental program. In view of the data compiled in Table 4 and
the typical load-shortening curve correlations obtained in Figs. 7-13, the agreement with
Spier's test results can be considered exceptionally good. Nevertheless, it should be pointed
out that the plates treated analytically pOssess straight unloaded edges whereas the
experimental plates reflect stress-free unloaded edges. However, the linear-elastic analyses
of Banks et ai. [22] for cross-plied reinforced plastic plates having both types of boundary
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YII. 8. Predicte4 load-shortening curve compared with test (specimen 4-82).

conditions along the unloaded edges show that load-shortening curves are essentially the
same in the early poatbuckling range (1 < 6/6", < 3). The load-shortening curve in Figs.
7-13 and the data of Table 4 are all in the range 1 < 6/6#1f' < 3.4. Thus, it would appear
that it is consistent to compare results of the present theoretical analysis with the
experimental work of Spier.

In retrospect, both the qualitative and quantitative nature of the correlation of
experimental and theoretical results appear to be quite satisfactory. Obviously, some
scatter in the test data is to be expected when dealing with composites. As to the theoretical
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Fig. 9. Predicted load-shortening curve compared with test (specimen 7-51).
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Fig. 10. Predicted load-shorteniq curve compared with test (specimen 3A).

model itself, the results demonstrate that it is quite capable of recognizing and dealing with
all macroscopic kinematical and constitutive effects on plate buckling, postbuckling, and
crippling. Certainly, it can be used to identify for the designer those configurations which
maximize both initial buckling and crippling loads. Althoup· the particular analyses
carried out apply to laminates made of one fiber/matrix system, the theoretical model is
capable of trellting hybrids (e.g. a combination of graphite and Kevlar epoxy laminae).
Finally, it is observed that the mixed variational principle of Reissner, as modified herein
to account for elasto-plastic behavior of composites, demonstrates excellent convergence
with a near minimum of free variables in the displacement·and stress distributions.
Specifically, it is noted that all solutions have been effected with only one term in the
out-of-plane deflection function.
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CONCLUDING REMARKS

The theory and available experimental data presented herein show that composite
plates have significant postbuckling strength which can and should be utilized in the design
process for achieving improved structural efficiency in primary structure. For example,
aircraft panels which have compressive loads applied could be designed on the basis of
using the ultimate rather than the buckling strength of the panel as the allowable in order
to achieve appreciable weight savings. For helicopter fuselage structure and commercial
airplane fuselage and empennage structure, load intensities are relatively light; thus, the
concept of permitting some buckling and postbuckling at and beyond limit load is not
without some justification. Since the material behavior of fiber-reinforced laminated
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composites is fundamentally nonlinear, theory and analysis capability has been made
available to accurately predict buckling, postbuckling and crippling of composites plates.
The theory and analysis developed herein, which both improves and extends earlier work
of Anderson and Mayers[5], when combined with the maximum strain failure criterion
provide the capability as demonstrated by close prediction ofavailable experimental results
providing load-shortening curves to failure. In addition, the transverse shear effects
included in the current theory and analysis have resolved to within ± 100/0 the large
discrepancy between the classical buckling criterion and experimental results for initial
buckling on thirty composite plates.

Aclcnowledgement-The authors acJcnowledge with deep appree:iation the key contribution of Edward E. Spier.
General Dynamics/Convair Division, in establishing experimental buckling, postbuckling, and crippling data for
a wide range of graphite/epoxy composite plate structures, the absence of which would have rendered the
theoretical analysis results presented herein only speculatively accurate.
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